If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2=39
We move all terms to the left:
m^2-(39)=0
a = 1; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·1·(-39)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*1}=\frac{0-2\sqrt{39}}{2} =-\frac{2\sqrt{39}}{2} =-\sqrt{39} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*1}=\frac{0+2\sqrt{39}}{2} =\frac{2\sqrt{39}}{2} =\sqrt{39} $
| 5h^2=0 | | 5i+4=14. | | 7x+5x+6=-2+2(5x+10) | | -x^2-24x+32=0 | | 8.5x+5.62=-34.33 | | (a+5)=1 | | 4.2=-2x+29.8 | | 7x(10+5)=(x10)+(7x) | | 4x+10x+6=-1+7(2x+1) | | 2.5y=24 | | X^2(2.25)=x | | 8x+4x+7=-2+3(4x+5 | | 2x+7+10=180 | | 9x+7x+8=-4+4(3x+5 | | 13x+2x+10=-2+3(5x+4 | | 6x(x-5)=42 | | (x)(x-8)=240 | | 1/2+x=5/3 | | 2x-22=167-x | | X3r=100 | | -3(2x+5)=-5x+3 | | 3y+64=73 | | -5x+6=4x-3 | | 4b-26=36 | | 46b-26=36 | | -2a+8=10 | | -21=7+4k | | 3x(3/2)-24=0 | | 51=-10x-9 | | b5=35 | | -9=(6/5)t | | 6=6-2q |